Important SPI2 References

This page summarizes a partial list of important references related to SPI2 research. The references are broadly divided into four different topical areas below. For a more complete set of references and additional technical details, please refer to this recent Ph.D. dissertation and associated 3D SPI2 review paper (conference version). An expanded journal version of the review paper is in preparation. This page may be updated as new research results emerge.

Component Layout Optimization, Container Loading and Bin Packing

  • C. Aladahalli, J. Cagan, and K. Shimada, “Objective Function Effect Based Pattern Search – Theoretical Framework Inspired by 3D Component Layout,” Journal of Mechanical Design, vol. 129, no. 3, pp. 243{254, 03 2006, doi:10.1115/1.2406095. [Online]. Available: https://doi.org/10.1115/1.2406095
  • S. Yin and J. Cagan, “An Extended Pattern Search Algorithm for Three- Dimensional Component Layout,” Journal of Mechanical Design, vol. 122, no. 1, pp. 102-108, 01 2000. [Online]. Available: https://doi.org/10.1115/1.533550
  • M. D. Landon and R. J. Balling, “Optimal Packaging of Complex Parametric Solids According to Mass Property Criteria,” Journal of Mechanical Design, vol. 116, no. 2, pp. 375-381, 06 1994, doi:10.1115/1.2919389. [Online]. Available: https://doi.org/10.1115/1.2919389
  • S. Szykman and J. Cagan, “Constrained Three-Dimensional Component Layout Using Simulated Annealing,” Journal of Mechanical Design, vol. 119, no. 1, pp. 28-35, 03 1997, doi:10.1115/1.2828785. [Online]. Available: https://doi.org/10.1115/1.2828785
  • S. Szykman, J. Cagan, and P. Weisser, “An Integrated Approach to Optimal Three Dimensional Layout and Routing,” Journal of Mechanical Design, vol. 120, no. 3, pp. 510-512, 09 1998. [Online]. Available: https://doi.org/10.1115/1.2829180
  • J. Cagan, D. Degentesh, and S. Yin,  “A simulated annealing-based algorithm using hierarchical models for general three-dimensional component layout,” Computer-Aided Design, vol. 30, no. 10, pp. 781 -790, 1998. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0010448598000360
  • H. Dong, P. Guarneri, and G. Fadel,  “Bi-level Approach to Vehicle Component Layout With Shape Morphing,” Journal of Mechanical Design, vol. 133, no. 4, 05 2011, 041008. [Online]. Available: https://doi.org/10.1115/1.4003916
  • M. Schafer and T. Lengauer,  “Automated Layout Generation and Wiring Area Estimation for 3D Electronic Modules ,” Journal of Mechanical Design, vol. 123, no. 3, pp. 330 -336, 05 1999, doi:10.1115/1.1371478. [Online]. Available: https://doi.org/10.1115/1.1371478
  • Natsuko Yano, Takashi Morinaga, and Tsutomu Saito,  “Packing optimization for cargo containers,” in 2008 SICE Annual Conference, Aug 2008, doi:10.1109/SICE.2008.4655264. pp. 3479 -3482.
  • N. Bansal, A. Lodi, and M. Sviridenko,  “A tale of two dimensional bin packing,” in 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), Oct 2005, doi:10.1109/SFCS.2005.10. pp. 657 -666.
  • K. A. Abdel-Malek, H. J. Yeh, and N. Maropis,  “Determining interference between pairs of solids defined constructively in computer animation,” Engineering with Computers, vol. 14, no. 1, pp. 48 -58, Mar. 1998, doi:doi.org/10.1007/BF01198974. [Online]. Available: https://doi.org/10.1007/BF01198974
  • A. Panesar, D. Brackett, I. Ashcroft, R. Wildman, and R. Hague,  “Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes,” Journal of Mechanical Design, vol. 137, no. 11, 10 2015, 111414. [Online]. Available: https://doi.org/10.1115/1.4030996
  • S. Yin, J. Cagan, and P. Hodges,  “Layout Optimization of Shapeable Components With Extended Pattern Search Applied to Transmission Design ,” Journal of Mechanical Design, vol. 126, no. 1, pp. 188 -191, 03 2004, doi:10.1115/1.1637663. [Online]. Available: https://doi.org/10.1115/1.1637663
  • S. Jain and H. C. Gea, “Two-dimensional packing problems using genetic algorithms,” Engineering with Computers, vol. 14, no. 3, pp. 206 -213, 1998. [Online]. Available: https://doi.org/10.1007/BF01215974
  •  E. Lopez-Camacho, G. Ochoa, H. Terashima-Marin, and E. K. Burke, “An effective heuristic for the two-dimensional irregular bin packing problem,” Annals of Operations Research, vol. 206, no. 1, pp. 241 -264, 2013. [Online]. Available:https://doi.org/10.1007/s10479-013-1341-4
  • R. Sridhar, D. Chandrasekaran, C. Sriramya, and T. Page, “Optimization of heterogeneous bin packing using adaptive genetic algorithm,” IOP Conference Series: Materials Science and Engineering, vol. 183, p. 012026, 03 2017.
  • R. L. Rao and S. S. Iyengar, “Bin-packing by simulated annealing,” vol. 27, no. 5, pp. 71 -82, 1994. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0898122194900779

2D and 3D Routing Problems

  • T. Ren, Z.-L. Zhu, G. Dimirovski, Z.-H. Gao, X.-H. Sun, and H. Yu, “A new pipe routing method for aero-engines based on genetic algorithm,” Proceedings of the Institution of Mechanical Engineers, Part G (Journal of Aerospace Engineering), vol. 228, no. 3, pp. 424-434, 2014, doi:10.1177/0954410012474134. [Online]. Available: http://dx.doi.org/10.1177/0954410012474134
  • Y. Qu, D. Jiang, G. Gao, and Y. Huo, “Pipe routing approach for aircraft engines based on ant colony optimization,” Journal of Aerospace Engineering, vol. 29, no. 3, p. 04015057, 2016, doi:10.1061/(ASCE)AS.1943-5525.0000543. [Online]. Available: http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000543
  • M. Gulic and D. Jakobovic, “Evolution of vehicle routing problem heuristics with genetic programming,” in 2013 36th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May 2013, pp. 988-992.
  • W.-Y. Jiang, Y. Lin, M. Chen, and Y.-Y. Yu, “A co-evolutionary improved multi-ant colony optimization for ship multiple and branch pipe route design,” Ocean Engineering, vol. 102, pp. 63-70, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0029801815001031
  • W.-y. Jiang, Y. Lin, M. Chen, and Y.-y. Yu, “An ant colony optimization-genetic algorithm approach for ship pipe route design,” International Shipbuilding Progress, vol. 61, no. 3-4, pp. 163-183, 2014.
  • L. Qiang and W. Chengen, “A discrete particle swarm optimization algorithm for rectilinear branch pipe routing,” Assembly Automation, vol. 31, no. 4, pp. 363-368, Jan. 2011. [Online]. Available: https://doi.org/10.1108/01445151111172952
  • X.-Y. Shao, X.-Z. Chu, H.-B. Qiu, L. Gao, and J. Yan, “An expert system using rough sets theory for aided conceptual design of ship’s engine room automation,” Expert Systems with Applications, vol. 36, no. 2, Part 2, pp. 3223- 3233, 2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0957417408000948
  • E. E. S. Calixto, P. G. Bordeira, H. T. Calazans, C. A. C. Tavares, M. T. D. Rodriguez, R. M. de Brito Alves, C. A. O. do Nascimento, and E. C. Biscaia, “Plant design project automation using an automatic pipe routing routine,” in Computer Aided Chemical Engineering. Elsevier, 2009, vol. 27, pp. 807-812. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1570794609703554
  • J.-H. Park and R. L. Storch, “Pipe-routing algorithm development: case study of a ship engine room design,” Expert Systems with Applications, vol. 23, no. 3, pp. 299-309, 2002. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0957417402000490
  • C.-K. Koh and P. H. Madden, “Manhattan or non-manhattan? a study of alternative vlsi routing architectures,” in Proceedings of the 10th Great Lakes Symposium on VLSI, ser. GLSVLSI ’00. New York, NY, USA: Association for Computing Machinery, 2000. [Online]. Available: https://doi.org/10.1145/330855.330961 pp. 47-52.
  • C. Van der Velden, C. Bil, X. Yu, and A. Smith, “An intelligent system for automatic layout routing in aerospace design,” Innovations in Systems and Software Engineering, vol. 3, no. 2, pp. 117 – 128, 2007, doi:10.1007/s11334-007-0021-4. [Online]. Available: http://dx.doi.org/10.1007/s11334-007-0021-4
  • J.-H. Park and R. Storch, “Pipe-routing algorithm development: case study of a ship engine room design,” Expert Syst. Appl. (UK), vol. 23, no. 3, pp. 299 – 309, 2002, doi:10.1016/S0957-4174(02)00049-0. [Online]. Available: http://dx.doi.org/10.1016/S0957-4174(02)00049-0
  • R. Guirardello and R. E. Swaney, “Optimization of process plant layout with pipe routing,” Computers and Chemical Engineering, vol. 30, no. 1, pp. 99-114, 2005. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0098135405001985
  • C. Liu, “Optimal design of high-rise building wiring based on ant colony optimization,” Cluster Computing, pp. 1 – 8, 2018. [Online]. Available: http://dx.doi.org/10.1007/s10586-018-2195-y
  • V. Betz and J. Rose, “Vpr: a new packing, placement and routing tool for fpga research,” in Field-Programmable Logic and Applications, W. Luk, P. Y. K. Cheung, and M. Glesner, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 213-222.
  • J. Tisdale, Z. Kim, and J. K. Hedrick, “Autonomous uav path planning and estimation,” IEEE Robotics Automation Magazine, vol. 16, no. 2, pp. 35-42, 2009.
  • G. E. Jan, K. Yin Chang, and I. Parberry, “Optimal path planning for mobile robot navigation,” IEEE/ASME Transactions on Mechatronics, vol. 13, no. 4, pp. 451-460, 2008.

Physics-based Optimization, and Geometric Projection Method

  • Sigmund, O., 2001.  “A 99 line topology optimization code written in matlab”.Structural and Multidisciplinary Optimization,21(2), 04, pp. 120–127.
  • Kazemi, H., Vaziri, A., and Norato, J. A., 2018.  “Topology Optimization of Structures Made of Discrete Geometric Components With Different Materials”. Journal of Mechanical Design,140(11), 09. 111401.
  • Iga, A., Nishiwaki, S., Izui, K., and Yoshimura, M., 2009.  “Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection” International Journal of Heat and Mass Transfer, 52(11-12), pp. 2721 – 2732.
  • Dirker, J., and Meyer, J. P., 2013. “Topology optimization for an internal heat-conduction cooling scheme in a square domain for high heat flux applications”. Journal of Heat Transfer,135(11).
  • de Kruijf, N., Zhou, S., Li, Q., and Mai, Y.-W., 2007.   “Topological design of structures and composite materials with multiobjectives”. International Journal of Solids and Structures,44(22-23), pp. 7092 – 109.
  • Takezawa, A., Yoon, G. H., Jeong, S. H., Kobashi, M., and Kitamura, M., 2014.   “Structural topology optimization with strength and heat conduction constraints”. Computer Methods in Applied Mechanics and Engineering,276, pp. 341 – 61.
  • Kang, Z., and James, K. A., 2019. “Multimaterial topology design for optimal elastic and thermal response with material-specific temperature constraints”. International Journal for Numerical Methods in Engineering,117(10), pp. 1019–1037.
  • James, K., Kennedy, G., and Martins, J., 2014. “Concurrent aerostructural topology optimization of a wing box”. Computers &; Structures,134, pp. 1 – 17.
  •  Dunning, P., Stanford, B., and Kim, H., 2015. “Coupled aerostructural topology optimization using a level set method for 3d aircraft wings”. Structural and Multidisciplinary Optimization,51(5),pp. 1113 – 32.
  • Oktay, E., Akay, H., and Merttopcuoglu, O., 2011. “Parallelized structural topology optimization and cfd coupling for design of aircraft wing structures”.Comput. Fluids (UK),49(1), pp. 141 – 5
  • Zhu, J., Zhang, W., Beckers, P., Chen, Y., and Guo, Z., 2008.  “Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique”. Structural and Multidisciplinary Optimization,36(1), pp. 29 – 41.
  • Zhu, J.-H., Guo, W.-J., Zhang, W.-H., and Liu, T., 2017.  “Integrated layout and topology optimization design of multi-frame and multi-component fuselage structure systems”. Structural and Multidisciplinary Optimization,56(1), pp. 21 – 45.
  • Zegard, T., and Paulino, G. H., 2016. “Bridging topology optimization and additive manufacturing”. Structural and Multidisciplinary Optimization,53(1), pp. 175 – 192.
  • Zhang, X. S., Paulino, G. H., and Ramos, A. S., 2018.  “Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity”. Structural and Multidisciplinary Optimization,57(1), pp. 161 – 182.
  • Norato, J., Bell, B., and Tortorelli, D., 2015. “A geometry projection method for continuum-based topology optimization with discrete elements”. Computer Methods in Applied Mechanics and Engineering,293, pp. 306 – 27. doi: 10.1016/j.cma.2015.05.005
  • Zhang, S., Norato, J. A., Gain, A. L., and Lyu, N., 2016. “A geometry projection method for the topology optimization of plate structures”. Structural and Multidisciplinary Optimization,54(5), pp. 1173 – 119

Spatial Graph Invariants, Yamada Polynomials, Knots and Links

  • E. Flapan, T. Mattman, B. Mellor, R. Naimi, and R. Nikkuni, “Recent developments in spatial graph theory,” arXiv: Geometric Topology, 2016.
  • S. Taylor, “Abstractly planar spatial graphs,” arXiv: Geometric Topology, 2019.
  • E. Flapan, B. Mellor, and R. Naimi, “Spatial graphs with local knots,” Revista Matematica Complutense, vol. 25, pp. 493-510, 2012.
  • B. Trace, “On the reidemeister moves of a classical knot,” 1983.
  • J. Hass, J. C. Lagarias, and N. Pippenger, “The computational complexity of knot and link problems,” J. ACM, vol. 46, no. 2, pp. 185-211, 1999. [Online]. Available: https://doi.org/10.1145/301970.301971
  • A. Ishii, “On normalizations of a regular isotopy invariant for spatial graphs,” International Journal of Mathematics, vol. 22, pp. 1545-1559, 2011.
  • S. Negami, “Polynomial invariants of graphs,” Transactions of the American Mathematical Society, vol. 299, pp. 601-622, 1987.
  • S. Cho and Y. Koda, “Topological symmetry groups and mapping class groups for spatial graphs,” Michigan Mathematical Journal, vol. 62, pp. 131-142, 2011.
  • E. Flapan, A. Henrich, A. Kaestner, and S. Nelson, “Knots, links, spatial graphs, and algebraic invariants,” 2017.
  • D. Bar-Natan, “On the vassiliev knot invariants,” Topology, vol. 34, pp. 423-472,1995.
  • L. Kauman, “New invariants in the theory of knots,” American Mathematical Monthly, vol. 95, pp. 195-242, 1988.
  • A. Thompson, “A polynomial invariant of graphs in 3-manifolds,” Topology, vol. 31, pp. 657-665, 1992.
  • J. Alexander, “Topological invariants of knots and links,” Transactions of the American Mathematical Society, vol. 30, pp. 275-306.
  • K. Murasugi, “Jones polynomials and classical conjectures in knot theory,” Topology, vol. 26, pp. 187-194, 1987.
  • L. Kauman, “Invariants of graphs in three-space,” Transactions of the American Mathematical Society, vol. 311, pp. 697-710, 1989.
  • Dobrynin and A. Vesnin, “On the yoshinaga polynomial of spatial graphs,” Kobe journal of mathematics, vol. 20, pp. 31-37, 2003.
  • Y. Yokota, “Topological invariants of graphs in 3-space,” Topology, vol. 35, pp.77-87, 1996.
  • T. Kong, A. Lewald, B. Mellor, and V. Pigrish, “Colorings, determinants and alexander polynomials for spatial graphs,” arXiv: Geometric Topology, 2015.
  • J. Murakami, “The yamada polynomial of spacial graphs and knit algebras,” Communications in Mathematical Physics, vol. 155, pp. 511-522, 1993.
  • S. Yamada, “An invariant of spatial graphs,” Journal of Graph Theory, vol. 13,no. 5, pp. 537-551, nov 1989.
  • A. Vesnin and A. Dobrynin, “The yamada polynomial for graphs, embedded knotwise into three-dimensional space,” Vychislitel’nye Sistemy, vol. 155, Jan. 1996.
  • M. Li, F. Lei, F. Li, and A. Vesnin, “On yamada polynomial of spatial graphs obtained by edge replacements,” arXiv: Geometric Topology, 2018.
  • Q. Deng, X. Jin, and L. Kauman, “The generalized yamada polynomials of virtual spatial graphs,” arXiv: Geometric Topology, 2018.